skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fresco, Alejandra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Understanding how galaxies interact with the circumgalactic medium (CGM) requires determining how galaxies’ morphological and stellar properties correlate with their CGM properties. We report an analysis of 66 well-imaged galaxies detected in Hubble Space Telescope and Very Large Telescope MUSE observations and determined to be within ±500 km s−1 of the redshifts of strong intervening quasar absorbers at 0.2 ≲ z ≲ 1.4 with H i column densities $$N_{\rm H I} \gt 10^{18}\, \rm cm^{-2}$$. We present the geometrical properties (Sérsic indices, effective radii, axis ratios, and position angles) of these galaxies determined using galfit. Using these properties along with star formation rates (SFRs, estimated using the H α or [O ii] luminosity) and stellar masses (M* estimated from spectral energy distribution fits), we examine correlations among various stellar and CGM properties. Our main findings are as follows: (1) SFR correlates well with M*, and most absorption-selected galaxies are consistent with the star formation main sequence of the global population. (2) More massive absorber counterparts are more centrally concentrated and are larger in size. (3) Galaxy sizes and normalized impact parameters correlate negatively with NHI, consistent with higher NHI absorption arising in smaller galaxies, and closer to galaxy centres. (4) Absorption and emission metallicities correlate with M* and specific SFR, implying metal-poor absorbers arise in galaxies with low past star formation and faster current gas consumption rates. (5) SFR surface densities of absorption-selected galaxies are higher than predicted by the Kennicutt–Schmidt relation for local galaxies, suggesting a higher star formation efficiency in the absorption-selected galaxies. 
    more » « less
  2. null (Ed.)
    ABSTRACT We present results of MUSE-ALMA haloes, an ongoing study of the circumgalactic medium (CGM) of galaxies (z ≤ 1.4). Using multiphase observations we probe the neutral, ionized, and molecular gas in a subsample containing six absorbers and nine associated galaxies in the redshift range z ∼ 0.3–0.75. Here, we give an in-depth analysis of the newly CO-detected galaxy Q2131−G1 (z = 0.42974), while providing stringent mass and depletion time limits for the non-detected galaxies. Q2131−G1 is associated with an absorber with column densities of log(NH i/cm−2) ∼ 19.5 and $$\textrm {log}(N_{\textrm {H}_2}/\textrm {cm}^{-2}) \sim 16.5$$, and has a star formation rate of SFR = 2.00 ± 0.20 M⊙yr−1, a dark matter fraction of fDM(r1/2) = 0.24–0.54, and a molecular gas mass of $$M_\textrm {mol} = 3.52 ^{+3.95}_{-0.31} \times 10^9 \,\, \textrm {M}_{\odot }$$ resulting in a depletion time of τdep < 4.15 Gyr. Kinematic modelling of both the CO (3–2) and [O iii] λ5008 emission lines of Q2131−G1 shows that the molecular and ionized gas phases are well aligned directionally and that the maximum rotation velocities closely match. These two gas phases within the disc are strongly coupled. The metallicity, kinematics, and orientation of the atomic and molecular gas traced by a two-component absorption feature are consistent with being part of the extended rotating disc with a well-separated additional component associated with infalling gas. Compared to emission-selected samples, we find that H i-selected galaxies have high molecular gas masses given their low star formation rate. We consequently derive high depletion times for these objects. 
    more » « less